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Abstract

In this paper, a novel concept of three-dimensional (3D) cellular networks, that integrate drone base

stations (drone-BS) and cellular-connected drone users (drone-UEs), is introduced. For this new 3D

cellular architecture, a novel framework for network planning for drone-BSs as well as latency-minimal

cell association for drone-UEs is proposed. For network planning, a tractable method for drone-BSs’

deployment based on the notion of truncated octahedron shapes is proposed that ensures full coverage

for a given space with minimum number of drone-BSs. In addition, to characterize frequency planning

in such 3D wireless networks, an analytical expression for the feasible integer frequency reuse factors

is derived. Subsequently, an optimal 3D cell association scheme is developed for which the drone-UEs’

latency, considering transmission, computation, and backhaul delays, is minimized. To this end, first,

the spatial distribution of the drone-UEs is estimated using a kernel density estimation method, and the

parameters of the estimator are obtained using a cross-validation method. Then, according to the spatial

distribution of drone-UEs and the locations of drone-BSs, the latency-minimal 3D cell association for

drone-UEs is derived by exploiting tools from optimal transport theory. Simulation results show that the

proposed approach reduces the latency of drone-UEs compared to the classical cell association approach

that uses a signal-to-interference-plus-noise ratio (SINR) criterion. In particular, the proposed approach

yields a reduction of up to 46% in the average latency compared to the SINR-based association. The
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results also show that the proposed latency-optimal cell association improves the spectral efficiency of

a 3D wireless cellular network of drones.

I. INTRODUCTION

Recent reports from the federal aviation administration (FAA) shows that the number of

unmanned aerial vehicles (UAVs), also known as drones, will exceed 7 million in 2020 [2]. Such

a massive use of drones will have significant impacts on wireless networking. From a wireless

perspective, the two key roles of drones include: aerial base station (BS), and user equipment

(UE) [3]–[5]. Due to their flexibility and inherent ability for line-of-sight (LoS) communications,

drone-BSs can provide broadband, wide-scale, and reliable wireless connectivity during disasters

and temporary events [4]–[11]. Moreover, drone-BSs offer a promising solution for ultra-flexible

deployment and cost-effective wireless services, without the prohibitive costs of terrestrial BSs.

Meanwhile, drones can also act as UEs (i.e., cellular-connected drone-UEs) that must connect

to a wireless network so as to operate. In particular, cellular-connected drone-UEs can be used for

wide range of applications such as package delivery [12], surveillance, remote sensing, and virtual

reality. The key feature of drone-UEs is their ability to intelligently move in three dimensions

and optimize their trajectory in order to efficiently complete their missions. Therefore, drone-

UEs are widely used for delivery purposes such as in Amazon’s prime air drone delivery service

and drug delivery in medical applications.

Wireless networking with drones faces a number of challenges. For instance, for drone-

BSs, key design problems include 3D deployment and network planning, performance analysis,

resource allocation, and cell association. For drone-UEs, there is a need for reliable and low

latency communications for efficient control. However, existing terrestrial cellular networks

have been primarily designed for supporting ground users and are not able to readily serve

aerial users. In fact, terrestrial BSs may not be able to meet the low-latency and reliable

communication requirements of drone-UEs due to blockage effects and the specific design of the

BSs’ antennas which are not suitable for supporting users at high-elevation angles. Also, in areas

with geographical constraints, terrestrial BSs may not be available to provide wireless service

to drone-UEs. In such cases, the deployment of aerial drone-BSs is a promising opportunity for

providing reliable wireless connectivity for drone-UEs. Clearly, to support drones in wireless
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networking applications, there is a need for developing the novel concept of a 3D cellular

network that incorporates both drone-BSs and drone-UEs.

A. Related Works on Drone Communications

Recent studies on drone communications have investigated various design challenges that

include performance characterization, trajectory optimization, 3D deployment, user-to-drone as-

sociation, and cellular-connected UAVs. For instance, in [7], the authors proposed an algorithm

for jointly optimizing the locations and number of drones to maximize wireless coverage. The

work in [13] studied the optimal 3D deployment of UAVs for maximizing the number of

covered ground users under quality-of-service (QoS) constraints. In [14], the authors proposed a

framework for strategic placement of multiple drone-BSs that provides wireless connectivity for

a large-scale ground network. However, the prior studies on deployment of UAV base stations

ignore the existence of flying drone-UEs.

In addition, the work in [15] presented a delay-optimal cell association scheme in a UAV-

assisted terrestrial wireless network. The work in [16] studied the optimal user-UAV association

for capacity improvement in UAV-enabled heterogeneous wireless networks. The work in [17]

proposed a novel hybrid network architecture for cellular systems by using UAVs as aerial base

stations for data offloading. In particular, with the proposed framework in [17], the minimum

throughput of mobile terminals is maximized by jointly optimizing the user partitioning, the

spectrum allocation, as well as the UAV trajectory. In [18], the authors proposed an algorithm for

maximizing the sum-rate of ground users by joint optimization of user-to-drone-BSs association

and wireless backhaul bandwidth allocation. The work in [19] proposed a novel cell association

approach that maximizes the total data delivered to ground users by drone-BSs that have limited

flight endurance. However, the previous works on user association in drone networks are limited

to ground users and do not consider 3D aerial users. Moreover, the previous works do not analyze

latency (due to e.g., communication, computation, and backhaul) which is a key metric in 3D

drone communication systems.

While there exists a number of studies on cellular-connected drone-UEs [20]–[22], the po-

tential use of drone-BSs for serving drone-UEs has not been considered. For example, in [20],

the authors studied the coexistence of drone-UEs and ground users in cellular networks and

characterized the downlink coverage performance. The work in [21] proposed an interference-
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aware path planning approach for drone-UEs with the goal of minimizing their communication

latency and their interference on terrestrial users. In [23], the authors analyzed the downlink

coverage performance of drone-UEs that communicate with terrestrial base stations. In [22], the

authors proposed a trajectory design scheme for minimizing the mission time of a single UAV-UE.

Meanwhile, the authors in [24] characterized the performance of drone-UEs in uplink commu-

nications with ground BSs in terms of blocking probability and average achievable throughput.

However, the existing studies on cellular-connected UAVs do not exploit the deployment of aerial

base stations for enabling low-latency and reliable drone-UEs’ communications.

However, none of these previous works [4]–[8], [13]–[16], [18]–[22], [25], studied a 3D

wireless network of co-existing aerial base stations and users (i.e., drone-BSs and drone-UEs)

while addressing network planning, deployment, and latency-aware cell association problems.

B. Contributions

The main contribution of this paper is to introduce the novel concept of a fully-fledged drone-

based 3D cellular network that incorporates drone-UEs, low-altitude platform (LAP) drone-

BSs, and high-altitude platform (HAP) drones. In this new 3D cellular network architecture, we

propose a framework for addressing the two fundamental problems of network planning and 3D

cell association. In particular, our proposed framework includes a tractable approach for three-

dimensional placement and frequency planning for drone-BSs, as well as a latency-minimal 3D

cell association scheme for servicing drone-UEs. For deployment, we introduce a new approach

based on truncated octahedron cells that determines the minimum number of drone-BSs that can

cover a 3D space, along with their locations. Furthermore, for frequency planning in the proposed

3D wireless network, we derive an analytical expression for the feasible integer frequency reuse

factors. To perform latency-minimal 3D cell association, first, we estimate the spatial distribution

of drone-UEs by using a kernel density estimation method. Then, given the locations of drone-

BSs and the distribution of drone-UEs, we find the optimal 3D cell association for which the

total latency of serving drone-UEs is minimized. In this case, we analytically characterize the

optimal 3D cell partitions by exploiting tools from optimal transport theory. Our results show

that the proposed approach significantly reduces the latency of serving drone-UEs, compared

to classical cell association approach that uses signal-to-interference-plus-noise ratio (SINR)

criterion. In particular, our approach yields around 46% reduction in the average total latency
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Fig. 1: The proposed 3D wireless network with drone-BSs, drone-UEs, and HAP drones.

compared to the SINR-bases association. The results also reveal that our latency-optimal cell

association improves spectral efficiency of the considered 3D wireless network with drones.

The rest of this paper is organized as follows. In Section II, we present the system model.

In Section III, the three-dimensional placement of drone-BSs is investigated. In Section IV, we

describe our approach for estimating the spatial distribution of drone-UEs. Section V presents

the proposed latency-optimal cell association scheme. Simulation results are provided in Section

VI and conclusions are drawn in Section VII.

II. SYSTEM MODEL

Consider a 3D cellular network composed of L drone users, N LAP drone base stations, and a

number of HAP drones, as shown in Fig. 1. We represent the sets of drone-UEs, and drone-BSs,

respectively, by L, and N . Here, we focus on a stand-alone aerial network that consists of flying
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drones. In this aerial network, drone-BSs serve drone-UEs1 in the downlink, and HAP drones

provide a wireless backhaul connectivity [26] for drone-BSs. The key advantage of HAP drones

is their ability to adjust their positions according to the locations of drone-BSs. In addition, due

to their high altitudes, HAPs can establish LoS backhaul links to the drone-BSs. Therefore, while

it is possible to use various types of backhaul for the proposed 3D cellular network [27], we used

HAPs that can establish free space optical communications (FSO) backhaul links to the UAV-

BSs due to the improved reliability and lower latency of this link compared to a terrestrial BS

backhaul. In our proposed 3D cellular network, we adopt omni-directional antennas for drone-

BSs to enable a full 3D connectivity. Here, the deployment of drone-BSs is performed based

on a 3D cellular structure which will be presented in Section III. For backhaul connectivity, we

assume that each drone-BS connects to its closest HAP that can provide a maximum rate. We

denote the backhaul transmission rate for drone-BS n by Cn, which is assumed to be given in

our model2. Drone-BS n uses transmit power Pn bandwidth Bn in order to serve its associated

flying drone-UEs. Let f(x, y, z) be the spatial probability density function of drone-UEs which

represents the probability that each drone-UE is present around a 3D location (x, y, z). In our

model, drone-BSs use machine learning tools to estimate the spatial probability distribution of

drone-UEs, for a certain period of time, based on any available prior information about the drone-

UEs’ locations. By performing such estimation, the network will no longer need to continuously

track the locations of flying drone-UEs thus alleviating the associated overhead. To find the

3D cell association when serving drone-UEs, we partition the space into N 3D cells each of

which representing a volume that must be serviced by one drone-BS. Let Vn be a 3D space (i.e.,

3D cell) associated to drone-BS n that serves drone-UEs located within this cell. The average

number of drone-UEs inside Vn is given by:

Kn = L

∫
Vn
f(x, y, z)dxdydz. (1)

We assume that each drone-BS adopts a frequency division multiple access (FDMA) technique

(as done in [19] and [28]) when servicing its associated drone-UEs. Hence, the average downlink

1Note that, drone-BSs are an essential part of a 3D cellular network, since drone-UEs are not capable of continuously

maintaining LoS links and sending uplink data directly to HAPs due to their mobility and energy limitations.
2The backhaul rate can be easily calculated based on the locations of HAPs and drone-BSs, transmit power of HAPs, and

bandwidth of backhaul links.
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transmission rate from a drone-BS n to a drone-UE located at (x, y, z) is:

Rn(x, y, z) =
Bn

Kn

log2
(
1 + γn(x, y, z)

)
, (2)

where Bn
Kn

is the amount of bandwidth for servicing each drone-UE located in Vn, which is

determined by sharing the total bandwidth among the drone-UEs. γn(x, y, z) is the SINR for a

drone-UE located at (x, y, z) served by drone-BS n.

We consider the average latency in servicing drone-UEs as our main performance metric.

In particular, we consider transmission latency in drone-BSs to drone-UEs communications,

backhaul latency in drone-BSs to HAP drones links, and computation latency for drone-BSs that

serve drone-UEs. The transmission latency for a drone-UE located at (x, y, z) which is served

by drone-BS n is 3:

τTr
n (x, y, z,Kn) =

β

Rn(x, y, z)
, (3)

where β is the number of bits per packet that must be transmitted to each drone-UE.

The backhaul latency depends on the load of drone-BSs and the backhaul transmission rates.

In this case, the average backhaul latency in drone-BS n to its corresponding HAP-drone

communications is given by:

τB
n (Kn) =

βL

∫
Vn
f(x, y, z)dxdydz

Cn
=
βKn

Cn
, (4)

where Cn is the maximum backhaul transmission rate for drone-BS n, and βL
∫
Vn f(x, y, z)dxdydz

represents the average load on drone-BS n.

The computation time depends on the data size (i.e., load) that must be processed in each

drone-BS, and the processing speed. To model the computational latency at drone-BS n, we use

function gn(βKn) with βKn being the total data size that must be processed at the drone-BS.

Therefore, the total latency experienced by any arbitrary drone-UE located at (x, y, z) while

being served by drone-BS n can be given by:

τ tot
n (x, y, z,Kn) = τTr

n (x, y, z,Kn) + τB
n (Kn) + gn(βKn), (5)

Given this model, our goal is to minimize the average latency of drone-UEs by finding the

optimal 3D cell association in drone-BSs to drone-UEs communications. In particular, given the

3(3) represents the transmission latency which is the time required to transmit an entire packet [29].
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locations of drone-BSs which are deployed based on a 3D cellular structure (in Section III),

and the estimated spatial distribution of drone-UEs (in Section IV), we determine the optimal

3D cell partitions Vn, ∀n ∈ N that lead to a minimum average latency for drone-UEs. In this

regard, our 3D cell association optimization problem can be posed as follows:

min
V1,...,VN

N∑
n=1

[∫
Vn
τTr
n

(
x, y, z,Kn

)
f(x, y, z)dxdydz + τB

n (Kn) + gn(βKn)

]
, (6)

s.t. Vl ∩ Vm = ∅, ∀l 6= m ∈ N , (7)⋃
n∈N

Vn = V , (8)

where Kn = L
∫
Vn f(x, y, z)dxdydz is the average number of drone-UEs in Vn which depends

on the 3D cell association, and V is the entire considered space in which drone-UEs can fly.

The constraints in (7) and (8) ensure that the 3D association spaces are disjoint and their union

covers the considered space V . Table I provides a list of our main parameters and notations.

In Fig. 2, we summarize the key steps for developing our proposed drone-based 3D cellular

network architecture. First, we plan the network deployment of drone-BSs based on a truncated

octahedron scheme that can ensure full coverage with a minimum number of drone-BSs. Second,

using some available information about the locations’ history of drone-UEs, we estimate the 3D

spatial distribution of the drone-UEs for a given period of time. Finally, given the locations of

drone-BSs and the spatial distribution of drone-UEs, we derive an optimal 3D cell association rule

for which the latency of servicing drone-UEs is minimized. Note that, we consider a relatively

long-term deployment of drones which can be updated after a specific period of time, if needed.

For each deployment configuration, one needs to optimally perform cell association based on

the distribution of drone-UEs so as to enhance the system performance.

III. THREE-DIMENSIONAL NETWORK PLANNING OF DRONE-BSS: A TRUNCATED

OCTAHEDRON STRUCTURE

To perform 3D network planning, we propose a framework for the 3D deployment of drone-

BSs and associated frequency planning. In particular, we use the notion of truncated octahedron

structure to determine the drone-BSs’ locations as well as the feasible integer frequency factors

that allow finding co-channel interfering drone-BSs.
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Table I: List of notations.

Notation Description

fc Carrier frequency

Pn Drone-BS transmit power

No Noise power spectral density

L Number of drone-UEs

Bn Bandwidth for each drone-BS

α Path loss exponent

η Path loss constant

β Packet size for drone-UE

q Frequency reuse factor

Cn Backhaul rate for drone-BS n

f(x, y, z) Spatial distribution of drone-UEs

f̂(x, y, z) Estimated spatial distribution of drone-UEs

L Number of drone-UEs

Vn 3D cell partition associated with drone-BS n

Kn Average number of drone-UEs inside Vn
Rn(x, y, z) average transmission rate from drone-BS n to a drone-UE located at (x, y, z)

τTr
n Transmission latency for drone-BS n

τB
n Backhaul latency for drone-BS n

τ tot
n (x, y, z,Kn) Total latency experienced by a drone-UE located at (x, y, z) served by drone-BS n

R Edge length of a truncated octahedron

γn(x, y, z) SINR for a drone-UE located at (x, y, z) served by drone-BS n

gn Computational latency at drone-BS n

ωn Computation constant (i.e., speed) for each drone-BS

µx, µy, µz Mean of the truncated Gaussian distribution in x, y, and z directions

σx, σy, σz Standard deviation of the distribution in x, y, and z directions

3D deployment of drone-BSs and  
frequency planning   based on 

truncated octahedron cells

Estimating the spatial distribution 
of drone-UEs using machine 

learning tools 

Optimal 3D cell association for 
minimum latency of drone-UEs using 

optimal transport theory

Locations of drone-BSs 
and co-channel cells

3D spatial distribution
 of drone-UEs

Fig. 2: Our proposed framework for designing the 3D cellular network.
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Fig. 3: Truncated octahedron in 3D.

In traditional ground cellular networks, hexagonal cell shapes are used while deploying base

stations. This is due to the fact that, a 2D space can be fully covered (i.e., without any gaps)

by non-overlapping hexagons. While triangle and square cells are also able to tessellate a 2D

area, the hexagonal cell is preferred in cellular wireless network planning due to the following

reasons. First, the hexagonal shape has a larger area than the square and the triangle, hence

less cells will be needed to cover a geographical area. Second, the hexagonal cell reasonably

approximates the circular radiation pattern of an omni-directional antenna base station.

Inspired by 2D cellular networks, we propose a framework for the deployment of a 3D cellular

network. In three dimensions, the regular polyhedron geometric shapes that can tessellate the

space (i.e., fill the 3D space entirely) include cube, hexagonal prism, rhombic dodecahedron,

and truncated octahedron [30]. Among these 3D shapes, the truncated octahedron is the closest

approximation of a sphere. Moreover, the number of polyhedron required for completely covering

a 3D space is minimized by adopting the truncated octahedron [30]. Therefore, in our model,

we use the truncated octahedron structure for deploying the drone-BSs.

The truncated octahedron is a polyhedron in three dimensions with regular polygons faces.

As we can see from Fig. 3, the truncated octahedron has 14 faces with 8 regular hexagonal

and 6 square, 24 vertices, and 36 edges [31]. The key feature of the truncated octahedron is

that it can tessellate the three-dimensional Euclidean space. In other words, the 3D space can

be completely filled with multiple copies of the truncated octahedron without any overlap. We

exploit this feature of the truncated octahedron in our 3D cellular network deployment with

drone-BSs.

The deployment of drone-BSs needs to be done such that the entire desired space is covered.

To this end, we first completely fill the given space with an arrangement of multiple truncated
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Fig. 4: Deployment of drone-BSs based on truncated octahedron cells.

octahedron cells. Then, we place each drone-BS at the center of each truncated octahedron,

as shown in Fig. 4 as an illustrative example. Our proposed deployment approach can ensure

full coverage for a given 3D space and is also easy to implement and tractable. Moreover, our

approach facilitates frequency planning in 3D cellular networks by deriving analytical expressions

for the feasible integer reuse factors. Next, we determine the locations of drone-BSs based on

the proposed truncated octahedron cell structure.

Theorem 1. The three-dimensional locations of drone-BSs in the proposed 3D cellular network

are given by:

P {a,b,c} =
[
xo, yo, zo

]
+
√
2R
[
a+ b− c,−a+ b+ c, a− b+ c

]
, (9)

where a, b, c are integers chosen from set {...,−2,−1, 0, 1, 2, ...}, and R is the edge length of

the considered truncated octahedrons. [xo, yo, zo] is the Cartesian coordinates of a given reference

location (e.g., center of a specified space).

Proof. For the deployment of drone-BSs, we first create a 3D lattice of truncated octahedrons

and then, place each drone-BS at the center of each truncated octahedron. Hence, to determine

the locations of drone-BSs, we need to find the center of truncated octahedrons.

Let [xo, yo, zo] be the center of the first truncated octahedron in Cartesian coordinates with

the x, y, and z directions being perpendicular to square faces A3, A2, and A1 as shown in Fig.

5. We find a new coordinate system whose integer coordinates are the center of the truncated

octahedrons. By moving, in integer value steps, along the axes of this coordinate system, we

can reach the center of the truncated octahedrons. We consider a coordinate system whose axes
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Fig. 5: Coordinate systems in drone-BSs deployment.

(e1, e2, e3) are vertically outward the hexagonal faces, A4, A5, and A6. Now, we find the

Euclidean length of each unit axis of this coordinate system. The distance between the center of

the truncated octahedron (e.g., [xo, yo, zo]) and each hexagonal face is R
√
6/2 [31]. Therefore,

the distance from [xo, yo, zo] to the center of an adjacent truncated octahedron connecting to

face A4 is R
√
6. As a result, each unit on axis e1 (and also e2 and e3) must be 2R

√
6. It can

be easily verified that the centers of the truncated octahedrons in the 3D lattice are the integer

coordinates of the (e1,e2,e3) coordinate system. Hence, the 3D location of each drone-BS can

be represented by a triple (a, b, c) with a, b, and c being integers. The position of a drone-BS

obtained by {a, b, c} is given by:

P {a,b,c} = ae1 + be2 + ce3. (10)

Now, we need to represent P {a,b,c} using Cartesian coordinates. To this end, we find the projection

of e1, e2, and e3 on the x, y, and z axes. With some geometric calculations and using the fact

that the dihedral angle (i.e., angle between two intersecting planes) between the adjacent square

face and hexagonal face is cos−1(−1√
3
) [31], we obtain:

e1 = R
√
6
(−1√

3
x+ 1√

3
y + 1√

3
z
)
,

e2 = R
√
6
(

1√
3
x+ −1√

3
y + 1√

3
z
)
,

e3 = R
√
6
(

1√
3
x+ 1√

3
y + −1√

3
z
)
.

(11)

Finally, using (10) and (11), the 3D locations of drone-BSs in Cartesian coordinates, with respect

to the reference position [xo, yo, zo] are given by:

P {a,b,c} =
[
xo, yo, zo

]
+
√
2R
[
a+ b− c,−a+ b+ c, a− b+ c

]
, (12)
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which proves the theorem. �

Using Theorem 1, we can find the 3D coordinates of drone-BSs which are deployed at the

centers of truncated octahedrons. Moreover, as shown next, Theorem 1 allows us to determine

the frequency reuse factor as well as interfering drone-BSs in the proposed 3D cellular network.

Theorem 2. In the considered 3D cellular network, any feasible integer frequency reuse factors

can be determined by solving the following equations:
q =

√[
3(n2

1 + n2
2 + n2

3)− 2(n1n2 + n1n3 + n2n3)
]3

27
,

q =

√[
3(m2

1 +m2
2 +m2

3)− 2(m1m2 +m1m3 +m2m3)
]3

64
,

(13)

where q is the frequency reuse factor which is a positive integer. n1, n2, n3, m1, m2, and m3

are integers that satisfy (13) by generating feasible frequency reuse factors.

Proof. We consider a truncated octahedron cell with 14 faces, as a reference cell. In this case,

the number of first tier co-channel interfering cells is 14. Since the distance between centers of

the reference cell and its adjacent cell is varies depending on the connecting face (i.e., hexagonal

or square face), we consider two different co-channel distances (i.e., reuse distances). Let Du

and Dl be two different reuse distances to different interfering cells.

Assume that the center of a co-channel cell at a distance Dl is located at a positive integer

coordinate (n1, n2, n3) in our defined coordinate system (e1, e2, e3). Now, using (9) in Theorem

1 leads to:

Dl =
√
2R
√

(n1 + n2 − n3)2 + (−n1 + n2 + n3)2 + (n1 − n2 + n3)2

(a)
= R

√
6(n2

1 + n2
2 + n2

3)− 4(n1n2 + n1n3 + n2n3), (14)

where in (a) we used algebraic identities.

Similar to 2D cellular networks, the frequency reuse factor is equal to the number of non-

interfering cells within a cluster of cells. Hence, cells within each cluster will use different

frequency bands. To find the frequency reuse factor in the 3D network, we compute the number

of non-interfering cells that create one 3D cluster. Clearly, for the reference cell, a co-channel

interfering cell is located in the adjacent cluster. Here, a given space is covered by multiple
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Fig. 6: Clusters of truncated octahedron cells.

clusters of truncated octahedron cells. In addition, any space can be fully covered by a number

of arbitrary-sized truncated octahedrons. Therefore, we can replace each cluster of cells with

a big truncated octahedron cell (as illustrated in Fig. 6) of the same volume. In this case, the

centers of two co-channel cells are also the centers of two adjacent big truncated octahedron

cells, as shown in Fig. 6. These two big cells can be connected to each other either from their

hexagonal face (reuse distance Dl) or square face (reuse distance Du). For the hexagonal case,

the edge length of the big cells, RB, is related to the reuse distance by:

RB =
Dl√
6
. (15)

The number of cells per cluster is equivalent to the volume ratio of the big cell (i.e., cluster)

to one truncated octahedron cell:

q =
VB
VS

(a)
=

8
√
2R3

B

8
√
2R3

=
( Dl√

6R

)3 (b)
=

√[
3(n2

1 + n2
2 + n2

3)− 2(n1n2 + n1n3 + n2n3)
]3

27
, (16)

where VB and VS are, respectively, the volumes of one cluster (e.g., big truncated octahedron)

and a truncated octahedron cell. (a) follows from the volume of the truncated octahedron as a

function of its edge length [31], and (b) follows from (14).

For two big cells connecting from their square faces, we have:

Du = R
√

6(m2
1 +m2

2 +m2
3)− 4(m1m2 + n1m3 +m2m3), (17)

RB =
Du

2
√
2
. (18)

Then, the integer frequency reuse will be:

q =
VB
VS

=
( Du

2
√
2R

)3
=

√[
3(m2

1 +m2
2 +m2

3)− 2(m1m2 +m1m3 +m2m3)
]3

64
. (19)
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Since the number of cells per cluster represents the frequency reuse factor is a positive integer,

(n1, n2, n3) and (m1,m2,m3) must generate an integer in (16) and (19). �

Theorem 2 can be used to determine the feasible integer frequency reuse factors in the

considered 3D network. In addition, while performing frequency planning, the 3D locations

of co-channel cells (i.e., drone-BSs) can be identified. As an example, the frequency reuse of

one is obtained by considering (n1, n2, n3) = (1, 0, 0), and (m1,m2,m3) = (1, 1, 0). In fact,

q = 1 corresponds to a worst-case scenario in which all the drone-BSs will interfere with each

other. In this case, the locations of co-channel interfering drone-BSs corresponding to a reference

cell with an edge length R and center (0, 0, 0) are the columns of the following matrix:

H =
√
2R


1 1 −1 1 1 −1 −1 −1 1 −1 2 0 0 −2 0 0

−1 1 1 1 1 −1 1 −1 −1 −1 0 2 0 0 −2 0

1 −1 1 −1 1 −1 −1 1 −1 1 0 0 2 0 0 −2

 , (20)

where each column of matrix H represents a 3D location of one co-channel drone-BS.

In summary, our approach for 3D deployment and frequency planning of drone-BSs can

proceed as follows. We deploy the first drone-BS as a reference cell in a specified space of

interest. Then, using our truncated octahedron model with parameter R, we use Theorem 1

to find the locations of other drone-BSs with respect to the reference cell. In this case, each

drone-BS is located at the center of one truncated octahedron cell. This results in a truncated

octahedron tessellation that covers a given space without any gap or overlap. For frequency

planning, we use Theorem 2 to find the feasible frequency reuse factors. Then, for any given

frequency reuse factor, we determine the sets of co-channel cells in the network. This, in turn,

enables us to compute the SINR and transmission latency (which is used in our optimization

problem in (6)) at any location in the 3D space.

To show the impact of the frequency reuse factor on the SINR of drone-UEs, in Fig. 7, we plot

the cumulative distribution function (CDF) of drone-UEs’ SINR in a 3D cell with a R = 400m.

As we expect, drone-UEs experience higher SINR for a higher frequency reuse factor (i.e., q).

However, a case with a frequency reuse factor 8 requires eight time more bandwidth compared

to the case of frequency reuse 1.
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Fig. 7: CDF of drone-UEs’ SINR in a 3D cell for two different frequency reuse factors.

IV. ESTIMATION OF THE SPATIAL DISTRIBUTION OF DRONE-UES

Since drone-UEs cannot continuously report their locations due to excessive overhead costs,

we need to design a machine learning based mechanism for estimating the locations of drone-

UEs using sparse information. Therefore, we assume that each drone-UE is able to report its

location at each T seconds. Then, using that, we estimate the spatial distribution of drone-UEs

which remains valid for the next T seconds. We should note that, during T seconds, the location

of each drone-UE is changing due to its mobility. However, the distribution of drone-UEs is

fixed so that we can use our estimation for the period of T seconds. To this end, we develop

a nonparametric model for f(x, y, z) using a kernel density estimation (KDE) [32]. In case of

parametric density estimation methods, if one uses a poor assumption for the density model, it

results in a poor estimation performance. However, nonparametric methods are not sensitive to

such poor assumptions.

The distribution of drone-UEs changes with time. Nevertheless, since we assume that this

distribution is fixed within an interval of T seconds, we sample the location of each drone-UE

every T seconds, and use it to estimate f(x, y, z). This reduces overhead compared to the case

in which the system knows the location of drone-UEs at every time instant. We consider some

small regions R where each drone lies in with probability p. Hence, the number of drone-UEs

in this region K follows a binomial distribution, i.e.,

Pr(K) =
L!

(L−K)!K!
pK(1− p)L−K , (21)
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For a binomial distribution, we know that the mean is E(K
L
) = p. Thus, we can write:

lim
L→∞

K

L
= p. (22)

Therefore, for a large L, we can assume K = Lp. Since R is a small region, we can assume

that f(x, y, z), ∀(x, y, z) ∈ R is constant, and hence:

p =

∫
R
f(x, y, z)dxdydz = f(x, y, z)VR, (23)

where VR is the volume of region R. Combining (22) and (23), we can write:

f(x, y, z) =
K

LVR
. (24)

If we define a small region R as a cube:

C( x
hx
,
y

hy
,
z

hz
) =

1, max{| x
hx
|, | y

hy
|, | z

hz
|} ≤ 1/2,

0, otherwise,
(25)

then, we can write the total number of users inside this cube as:

K =
L∑
i=1

C
(
x− xi
h

,
y − yi
h

,
z − zi
h

)
= Lhxhyhzf(x, y, z). (26)

Since the volume of the cube in (25) is hx · hy · hz, we can write the density function as:

f(x, y, z) =
1

L

L∑
i=1

1

hxhyhz
C
(
x− xi
hx

,
y − yi
hy

,
z − zi
hz

)
, (27)

which can be interpreted as L cubes with the volume hx · hy · hz centered at each data point.

Also, hx, hy, and hz are the widths of the kernel in dimensions x, y, and z, respectively. To

remove the discontinuity of cubes in the space, we use Gaussian kernels [33]. If we approximate

each cube in (27) with a Gaussian kernel, we have:

f̂(x, y, z) =
1

L

L∑
i=1

1√
(2π)3hxhyhz

e
−
(

(x−xi)
2

hx
+

(y−yi)
2

hy
+

(z−zi)
2

hz

)
. (28)

f̂(x, y, z) is not equal to f(x, y, z), for two reasons. First, L is a finite number, and second,

the Gaussian kernel is an approximation of the cube in (25). However, we will see that this

estimation has small errors even when the value of L is not large. We assume that x, y, and

z are uncorrelated, and hence, all the off-diagonal elements of the covariance matrix are zero.

Here, the parameters hx, hy, and hz have a major effect on the accuracy of the estimation and
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need to be estimated. The criteria for accuracy of kernel density estimation is the mean integrated

squared error (MISE) and for our problem, it is given by:

e = E

[ ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(
f̂(x, y, z;hx, hy, hz)− f(x, y, z)

)2
dxdydz

]
. (29)

Since the MISE is not a mathematically tractable expression except in special cases, we have to

use approximation methods for approximating it. To this end, we first write MISE as:

E

[ ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f̂ 2(x, y, z;hx, hy, hz) + f 2(x, y, z)− 2f̂(x, y, z;hx, hy, hz)f(x, y, z)dxdydz
]
,

(30)

where hx, hy, and hz are solutions to the following minimization problem:

[hx, hy, hz] = argminE

[ ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f̂ 2(x, y, z)− 2f̂(x, y, z;hx, hy, hz)f(x, y, z)dxdydz
]
,

(31)

where f 2(x, y, z) has been omitted since it is a constant in the minimization problem. We can

approximate (31) using leave-one-out cross-validation (LOOCV) methods. To this end, we first

build a model for f̂(x, y, z;h) using the locations of all drone-UEs except one [34]. Then, we find

the log-likelihood for the remaining drone-UEs’ locations using the current model. We repeat

this operation and take an average with L log-likelihood values, i.e.,

L(hx, hy, hz) =
1

L

L∑
j=1

f̂−j(Xj, Yj, Zj;hx, hy, hz) (32)

=
1

L

L∑
i=1
i6=j

1√
(2π)3hxhyhz

e
−
(

(Xj−xi)
2

hx
+

(Yj−yi)
2

hy
+

(Zj−zi)
2

hz

)
. (33)

It can be shown [35], [36] that:

E

[
f̂(x, y, z;hz, hy, hz)

]
= L(hx, hy, hz), (34)

and since

E

[ ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f̂(x, y, z;hx, hy, hz)f(x, y, z)dxdydz
]
= E

[
f̂(x, y, z;hz, hy, hz)

]
, (35)

we can find hx, hy, and hz by a cross-validation method as:

hx, hy, hz = argminE

[ ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f̂ 2(x, y, z)dxdydz − 2L(hx, hy, hz)
]
. (36)

Hence, we can say that −L(hx, hy, hz) is a biased estimator of MISE. Therefore, it can predict

the location of the minimum MISE, and using that, we can find the optimal hx, hy, and hz.
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Algorithm 1 drone-UEs’ distribution estimation algorithm
Input: drone-UEs location (X1, Y1, Z1) · · · , (XL, YL, ZL)

Output: f̂(x, y, z)

Initialize: H ← set of candidate for {hx, hy, hz}, L(hbest)←∞

for hx, hy, hz ∈ H do

for j = 1, · · · , L do

Build a model using (28) with Xi, i ∈ {1, · · · , L}, i 6= j

sum← sum+ 1
2
log hx +

1
2
log hy +

1
2
log hz +

(
(Xj−xi)2

hx
+

(Yj−yi)2

hy
+

(Zj−zi)2

hz

)
+ 3

2
log(2π)

end for

L(hx, hy, hz)← 1
L

sum

if L(hx, hy, hz) ≤ L(hbest) then

hbest ← hx, hy, hz

end if

end for

hx, hy, hz ← hbest

return f̂(x, y, z;hx, hy, hz) in (28) as drone-UEs PDF
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Fig. 8: MISE for symmetric kernel widths (hx = hy = hz = h).

Algorithm 1 summarizes the estimation of f(x, y, z) using location of drone-UEs in each T

seconds.

Fig. 8 shows the MISE in case of symmetric kernels (hx = hy = hz = h) for 30 drone-UEs for

different values of h. As we can see, our algorithm can potentially minimize the MISE to a value

of 7.9554× 10−04. Fig. 9 shows the negative log-likelihood function. As we can see from Figs.

8 and 9, −L(hx, hy, hz) is a biased estimator of MISE, and hence, we can use −L(hx, hy, hz) to

find the optimal hx, hy, hz. Fig. 9 shows that, by means of LOOCV method, the MISE for our
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Fig. 9: LOOCV method for finding an optimal kernel width (h).

PDF estimation is 5.7221×10−04 which is close to the MISE lower bound that is 7.9554×10−04.

In summary, our approach for estimation of drone-UE spatial distribution is as follows. We

collect the location of drone-UEs at each T seconds. Then, we estimate the distribution of drone-

UEs to use it for 3D cell association during the next T seconds. We adopt an accuracy metric

for our density estimation and use it to find width of the kernels. We showed that our approach

is able to estimate the spatial distribution of drone-UEs with a near optimal accuracy.

V. OPTIMAL 3D CELL ASSOCIATION FOR MINIMUM LATENCY

In Sections III and IV, we determined the locations of drone-BSs and the spatial distribution of

drone-UEs. Here, we use this information (i.e., drone-BSs’ locations and drone-UEs’ distribution)

to explicitly formulate our latency-optimal 3D cell association problem.

min
V1,...,VN

N∑
n=1

[∫
Vn

βKn

Bn log2
(
1 + γn(x, y, z)

) f̂(x, y, z)dxdydz +
βKn

Cn
+ gn(βKn)

]
, (37)

s.t. Kn = L

∫
Vn
f̂(x, y, z)dxdydz, (38)

Vl ∩ Vm = ∅, ∀l 6= m ∈ N , (39)⋃
n∈N

Vn = V , (40)

where γn(x, y, z) is the downlink SINR for a drone-UE located at (x, y, z) which is served by

drone-BS n. Considering a practical bounded path loss model [37] for air-to-air communications,
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the SINR can be given by:

γn(x, y, z) =
ηκn(x, y, z)Pn[1 + dn(x, y, z)]

−α∑
u∈Iint

ηκu(x, y, z)Pu[1 + du(x, y, z)]−α +NoBn

, (41)

dn(x, y, z) =
√
(x− xn)2 + (y − yn)2 + (z − zn)2, (42)

du(x, y, z) =
√

(x− xu)2 + (y − yu)2 + (z − zu)2, u ∈ Iint, (43)

where κn(x, y, z) is a channel gain factor between a drone-UE, located at (x, y, z), and drone-BS

n. κn(x, y, z) depends on the environment, and the locations of the drone-UE and drone-BS.

κn(x, y, z) = 1 corresponds to a LoS air-to-air communication, while 0 < κn(x, y, z) < 1 can

capture the impact of NLoS conditions. α is the path loss exponent, No is the noise power

spectral density, η is the path loss constant, and (xn, yn, zn) is the 3D location of drone-BS n.

dn(x, y, z) and du(x, y, z) are, respectively, the distance of drone-BSs n and u with a drone-UE

located at (x, y, z). Also, Iint is the set of co-channel interfering drone-BSs that operate over the

same frequency band as drone-BS n.

Solving (37) is challenging since the optimization variables Vn, ∀n ∈ N , are continuous 3D

association spaces which are mutually dependent. Furthermore, the fact that the size and shape of

these 3D association spaces are unknown, exacerbates the complexity. In addition, the objective

function in (37) does not have a closed-form expression thus making the problem intractable.

Consequently, employing traditional optimization techniques (e.g., convex optimization) are not

sufficient to solve (37). Here, we tackle our 3D space association by exploiting optimal transport

theory. In particular, first, we prove the existence of an optimal solution to (37) and, then, we

completely characterize the solution space. We note that, compared to our previous work in

[19], this work is different in terms of the system model, the 3D cell association optimization

problem, as well as the solution.

Optimal transport theory is a mathematical tool that is used to find an optimal mapping between

two arbitrary probability measures [38]. More specifically, in a semi-discrete optimal transport

problem, a continuous probability density function must be mapped to a discrete probability

measure. In such a semi-discrete case, the optimal transport map will optimally partition the

continuous distribution and assign each partition to one point in the discrete probability measure

(which, in our case, is the discrete set of drone-BSs).
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Our cell association problem can be modeled as a semi-discrete optimal transport problem in

which the source measure (drone-UEs’ distribution) is continuous while the destination (distri-

bution of drone-BSs) is discrete. Then, the optimal 3D cell partitions are obtained by optimally

mapping the drone-UEs to drone-BSs.

Lemma 1. The optimization problem in (37) admits an optimal solution for any semi-continuous

function gn(.), n ∈ N .

Proof. Consider Kn = L
∫
Vn f̂(x, y, z)dxdydz and the following simplex:

S=

{
K = (K1, K2, ..., KN)∈ RN ;

N∑
n=1

Kn = L,Kn ≥ 0,∀n ∈ N

}
. (44)

Given any vector K, the optimization problem in (37) can be represented by:

min
V1,...,VN

N∑
n=1

∫
Vn
c(v, sn)f̂(v)dv, (45)

s.t.
∫
Vn
f̂(v)dv =

Kn

L
, (46)

Vl ∩ Vm = ∅, ∀l 6= m ∈ N ,
⋃
n∈N

Vn = V , (47)

where sn is the location of drone-BS n, v = (x, y, z), and c(v, sn) = βKn

Bn log2

(
1+γn(x,y,z)

) +

L
Kn

(βKn
Cn

+ gn(βKn)).

This optimization problem is equivalent to the following semi-discrete optimal transport

problem:

min
T

∫
V
c (v, s)f̂(v)dv, s = T (v), (48)

where s is the location of a drone-BS, and T (.) is the transport map which is related to 3D cell

partition Vn by: {
T (v) =

N∑
n=1

sn1Vn(v);

∫
Vn
f̂(v)dv =

Kn

L

}
. (49)

Considering the fact that for any semi-discrete optimal transport problem with a lower semi-

continuous cost function an optimal transport map exists [38], [39], (45) admits an optimal

solution for any K ∈ S. Also, since S is a simplex (which is a non-empty and compact set),

problem (37) admits an optimal solution over the entire S. This proves Lemma 1. �

Next, given the existence of the optimal solution, we characterize the solution.
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Theorem 3. The optimal 3D cell association for drone-BS l, that leads to a minimum average

latency in (37), is given by:

V∗l =
{
(x, y, z)

∣∣αl + Kl

L
hl(x, y, z) +

β

Cl
+ g′l(βKl)

≤ αm +
Km

L
hm(x, y, z) +

β

Cm
+ g′m(βKm), ∀l 6= m

}
, (50)

where hl(x, y, z) , β

Bl log2

(
1+γl(x,y,z)

) , and αl ,
∫
Vl
hl(x, y, x)f̂(x, y, z)dxdydz.

Proof. See Appendix A. �

Using Theorem 3, we can determine the optimal 3D cell partitions associated with each drone-

BS that ensure the minimum average latency for drone-UEs. From (50), we can see how the

optimal 3D association depends on various network’s parameters such as the distribution of

drone-UEs, locations of drone-BSs, backhaul data rate, load of the network, and the computa-

tional speed. Based on these parameters, Theorem 3 is utilized to optimally partition a specified

space and determine a minimum latency 3D cell association scheme. In this case, to minimize

the average latency, a drone-BS with a faster backhaul link and computational capabilities, or

higher bandwidth and transmit power will serve more drone-UEs.

To solve (50), we propose the iterative algorithm shown in Algorithm 2. This algorithm,

based on [39], converges to the optimal solution within a reasonable number of iterations. The

complexity of this iterative approach mainly depends on computing the numerical integration in

Step 6 of Algorithm 2. A practical approach to compute this integration is to use a pixel-based

integration as given in [40]. This approach is practical to implement as its complexity grows

linearly with the size of the considered 3D space V . Algorithm 2 for solving (50) that finds the

optimal 3D cell partitions proceeds as follows. The inputs are the 3D spatial distribution of drone

UEs, number of drone-UEs, load, locations of the drone-BSs, computation time function, and

the number of iterations, Q. In Algorithm 2, t represents the iteration number. First, we generate

initial 3D cell partitions V(t)
l , and set ψ(t)

l (x, y, z) = 0, ∀l ∈ N , with ψ
(t)
l (x, y, z) being a pre-

defined parameter which is used to update the cell partitions. Next, we update ψ(t+1)
l (x, y, z),

and compute Kl in step 6. In step 8, we update the partitions based on (50). Finally, we obtain

the optimal 3D cell partitions and associations, at the end of the iteration.

In summary, our approach for deployment and latency-optimal cell association in the proposed

3D cellular network is as follows. First, using the proposed truncated octahedron approach, and
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Algorithm 2 Iterative algorithm for finding the optimal 3D cell association.

1: Inputs: f̂(x, y, z), β, Q, L, Locations of drone-BSs, Cl, gl(.), ∀l ∈ N .

2: Outputs: V∗
l , ∀l ∈ N .

3: Set t = 1, generate an initial cell partitions V(t)
l , and set ψ(t)

l (x, y, z) = 0, ∀l ∈ N .

4: while t < Q do

5: Compute ψ(t+1)
l (x, y, z) =

 [1− 1/t]ψ
(t)
l (x, y, z), if (x, y, z) ∈ Vl(t),

1− [1− 1/t]
(
1− ψ(t)

l (x, y, z)
)
, otherwise.

6: Compute Kl =
∫
V

(
1− ψ(t+1)

l (x, y, z)
)
f̂(x, y, z)dxdydz, ∀l ∈ N .

7: t→ t+ 1.

8: Update cell partitions using (50).

9: end while

10: V∗
l = V(t)

l ,

Theorems 1 and 2 in Section III, we determine the locations of drone-BSs as well as the co-

channel cells. Then, in Section IV, we estimate the spatial distribution of drone-UEs using kernel

method presented in Algorithm 1. Finally, based on the determined locations of drone-BSs and

the drone-UEs’ distribution, we use Algorithm 2 to derive the optimal 3D cell association for

which the average total latency of serving drone-UEs is minimized.

VI. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a cubic space of size 3 km×3 km×3 km in which 18 drone-

BSs are deployed based on the proposed truncated octahedron approach to serve drone-UEs.

We determine the locations of drone-BSs by using (12) with parameters a ∈ {−1, 0, 1}, b ∈

{−1, 0, 1}, c ∈ {0, 1}, and R = 400m. We randomly generate a sample (i.e., a realization of a

continuous distribution) of drone-UEs’ locations based on a three-dimensional truncated Gaussian

distribution with a specified mean and variance values. These locations’ samples are then used

to estimate the spatial distribution of drone-UEs using Algorithm 1. For the computation time,

we consider a quadratic function of data size (i.e., load on each drone-BS), but our approach

can accommodate any other arbitrary function. Here, the computation time for drone-BS n is

gn(βKn) =
(βKn)2

ωn
, with ωn being the processing speed of drone-BS n. Unless states otherwise,

we use the simulation parameters listed in Table I. We compare our proposed 3D cell association

with the classical SINR-based association (i.e., weighted Voronoi diagram) baseline. All statistical
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Table II: Simulation parameters.

Parameter Description Value

fc Carrier frequency 2 GHz

Pn Drone-BS transmit power 0.5 W

No Noise power spectral density -170 dBm/Hz

L Number of drone-UEs 200

Bn Bandwidth for each drone-BS 10 MHz

α Path loss exponent 2

η Path loss constant 1.42× 10−4

β Packet size for drone-UE 10 kb

q Frequency reuse factor 1

Cn Backhaul rate for drone-BS n (100 + n) Mb/s

ωn Computation constant (i.e., speed) for each drone-BS 102 Tb/s

µx, µy, µz Mean of the truncated Gaussian distribution in x, y, and z directions 1000 m, 1000 m, 1000 m

σx, σy, σz Standard deviation of the distribution in x, y, and z directions 600 m, 600 m, 600 m

κn Channel gain factor 1

results are averaged over a large number of independent runs.

Fig. 10 shows the average total latency as a function of the number of drone-UEs for the

proposed 3D cell association and the SINR-based association schemes. As we can see from this

figure, the total latency increases by increasing the number of drone-UEs. A higher number of

drone-UEs leads to a higher network congestion which, in turn, increases transmission time,

backhaul latency, and computation time. Fig. 10 shows that, when the number of drone-UEs

increases from 200 to 300, the total latency increases by 56% and 42% for the SINR-based

association and the proposed approach. Moreover, we can see that our proposed approach

significantly reduces the latency compared to the SINR association case. This is due to the fact

that, in our approach, besides SINR, the impact of congestion on the transmission, backhaul,

and computational latencies is also taken into account. The proposed approach avoids creating

highly congested 3D cell partitions that can cause excessive latency. From Fig. 10, we can see

that our approach yields, on the average, 43.9% reduction in the average total latency compared

to the SINR-based association.

Fig. 11 shows how the latency can be reduced by increasing the transmission bandwidth. By

using more bandwidth, the transmission rate increases and, hence, the transmission latency de-

creases. Fig. 11 also reveals that our approach significantly enhances spectral efficiency compared

to the SINR-based association. In essence, compared to the SINR case, the proposed approach
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Fig. 10: Average total latency vs. number of drone-UEs.
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requires less transmission bandwidth in order to meet a certain latency requirement. For instance,

as we can see from Fig. 11, to ensure a 70 ms maximum total latency, our approach requires

57% less bandwidth than the SINR-based association scheme. Another observation from Fig. 11

is that the rate of latency reduction decreases as the bandwidth increases. This is because in

large bandwidth scenarios, the transmission latency can be smaller than the computation and

backhaul latencies. Thus, the impact of decreasing the transmission latency on the total latency

is relatively minor.
Fig. 12 shows the impact of drone-UEs’ load on the transmission, computation, and backhaul

latencies. As expected, these three types of latency increase when the load of drone-UEs in-

creases. Nevertheless, the rate of increase is different for different types of latency. For instance,
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proposed approach.

in Fig. 12, the increase rate of the transmission latency is higher than that of computational

latency and backhaul latency. The impact of load on each type of latency depends on two

factors: 1) the function that directly relates the load to the latency, and 2) the 3D cell partitions

which are related to load by (50). In fact, while varying load, the cell partitions and different

component of latency dynamically change such that the total latency is minimized.

In Fig. 13, we evaluate the impact of sampling time, T on the latency (which depends accuracy

of 3D cell partitions). To this end, we consider a time varying distribution for drone-UEs whose

mean changes by T . In Fig. 13, we consider a three-dimensional truncated Gaussian distribution

whose mean value increases by νT , with ν being a rate of distribution change. In Fig. 13, we

show how the latency increases by increasing T , for ν = 0.1. Note that, while the accuracy of

distribution estimation increases by reducing T , this results in a higher complexity and overhead

in the considered network. In Fig. 13, we show the additional latency that can be caused by an

error in estimating the drone-UEs’ distribution. Clearly, the total latency significantly depends on

the 3D cell partitions which themselves are a function the drone-UEs’ distribution. Therefore, an

estimation error in the drone-UEs’ distribution leads to a deviation from the optimality of the cell

partitions. Consequently, such estimation error will increase the latency. Hence, by decreasing T ,

the network can obtain a more accurate distribution estimation and, hence, a lower latency. For

instance, as we can see from Fig. 13, the latency decreases by 6% when decreasing the sampling
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time from 20 minutes to 10 minutes, for ν = 10m/min.

Finally, in Fig. 14, we show the convergence of Algorithm 2 that is used to find the optimal

3D cell association by iteratively solving (50). As we can see from this figure, Algorithm 2

converges within 6 iterations.

VII. CONCLUSION

In this paper, we have introduced a novel framework for cell association and deployment

in 3D cellular networks with drone-BSs and drone-UEs. We have proposed a tractable method

for the 3D deployment of drone-BSs and solved the problem of cell association with the goal

of minimizing the latency of drone users. For deployment, we have determined the drone-BSs’

locations based on a truncated octahedron structure and derived the feasible frequency reuse factor
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in the considered 3D network. For latency-minimal cell association, first, we have estimated

the spatial distribution of the drone-UEs using the kernel density estimation method. Then,

using the estimated distribution of drone-UEs and the location of drone-BSs, we have derived

the optimal cell association of drone-UEs using optimal transport theory such that the latency

for drone-UEs is minimized. Our results have shown that the proposed approach significantly

reduces the latency of drone-UEs compared to the classical SINR-based association. Furthermore,

the proposed latency-optimal cell association improves the spectral efficiency of the 3D drone-

enabled wireless networks.

APPENDIX

A. Proof of Theorem 3

In Lemma 1, we proved the existence of the optimal 3D cell partitions Vn, n ∈ N . Now,

consider two 3D partitions Vl and Vm, and a point vo = (xo, yo, zo) ∈ Vl. Also, let Bε(vo) be a

ball with a center vo and radius ε > 0. Now, we generate the following new 3D partitions
_

Vn
(which are variants of the optimal partitions):

V̂l = Vl\Bε(vo),

V̂m = Vm ∪Bε(vo),

V̂n = Vn, n 6= l,m.

(51)

Let us define p1(Kn) , Kn, p2(Kn) ,
βKn
Cn

, Kε = L
∫
Bε(vo)

f̂(x, y, z)dxdydz, and K̂n =

L
∫
V̂n f̂(x, y, z)dxdydz. Considering the optimality of Vn, n ∈ N , we have:∑

n∈N

∫
Vn
p1 (Kn)hn(x, y, z)f̂(x, y, z)dxdydz + p2(Kn) + gn(βKn)

(a)

≤
∑
n∈N

∫
V̂n
p1

(
K̂n

)
hn(x, y, z)f̂(x, y, z)dxdydz + p2(K̂n) + gn(βK̂n). (52)

Canceling out the common terms in (52) leads to:∫
Vl
p1 (Kl)hl(x, y, z)f̂(x, y, z)dxdydz + p2(Kl) + gl(βKl)

+

∫
Vm
p1 (Km)hm(x, y, z)f̂(x, y, z)dxdydz + p2(Km) + gm(βKm)

≤
∫
Vm∪Bε(vo)

p1 (Km +Kε)hm(x, y, z)f̂(x, y, z)dxdydz + p2(Km) + gm(β(Km +Kε))

+

∫
Vl\Bε(vo)

p1 (Kl −Kε)hl(x, y, z)f̂(x, y, z)dxdydz + p2(Kl −Kε) + gl(β(Kl −Kε)), (53)
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Vl
(p1 (Kl)− p1 (Kl −Kε))hl(x, y, z)f̂(x, y, z)dxdydz + p2(Kl)− p2(Kl −Kε)

+ gl(βKl)− gl(β(Kl −Kε)) +

∫
Bε(vo)

p1 (Kl −Kε)hl(x, y, z)f̂(x, y, z)dxdydz

≤
∫
Vm

(p1 (Km +Kε)− p1 (Km))hl(x, y, z)f̂(x, y, z)dxdydz + p2(Km +Kε)− p2(Km)

+ gm(β(Km +Kε))− gm(βKm) +

∫
Bε(vo)

p1 (Km +Kε)hm(x, y, z)f̂(x, y, z)dxdydz, (54)

where (a) comes from the fact that Vn, ∀n ∈ N are optimal 3D partitions and, thus, any variation

of such optimal partitions, shown by V̂n, does not lead to a better solution.

Note that, Kε = L
∫
Bε(vo)

f̂(x, y, z)dxdydz. Now, we multiply both sides of the inequality in

(54) by 1
Kε

and take the limit when ε→ 0. Then, we use the following equalities:

lim
ε→0

Kε = 0, (55)

lim
Kε→0

p1(Kl)− p1(Kl −Kε)

Kε

= p′1(Kl), (56)

lim
Kε→0

p1(Km +Kε)− p1(Km)

Kε

= p′1(Km), (57)

lim
Kε→0

∫
Bε(vo)

p1 (Kl −Kε)hl(x, y, z)f̂(x, y, z)dxdydz

Kε
= lim
Kε→0

p1 (Kl)hl(vo)

∫
Bε(vo)

f̂(x, y, z)dxdydz

Kε
=
p1 (Kl)hl(vo)

L
,

lim
Kε→0

∫
Bε(vo)

p1 (Km +Kε)hm(x, y, z)f̂(x, y, z)dxdydz

Kε
= lim
Kε→0

p1 (Km)hm(vo)

∫
Bε(vo)

f̂(x, y, z)dxdydz

Kε
=
p1 (Km)hm(vo)

L
.

Finally, using (55)-(58), we obtain:

p′1 (Kl)

∫
Vl
hl(x, y, z)f̂(x, y, z)dxdydz +

1

L
p1 (Kl)hl(vo) + p′2(Kl) + g′l(βKl)

≤ p′1 (Km)

∫
Vm
hm(x, y, z)f̂(x, y, z)dxdydz +

1

L
p1 (Km)hm(vo) + p′2(Km) + g′m(βKm). (58)

Note that, in p′1(Kl), the derivative is taken with respect to a single variable which is written as

p′1(Kl) =
dp1(t)
dt

∣∣∣
t=Kl

.

We can further proceed to derive a tractable expression for (58):

Given p1(Kl) = Kl, we can compute p′1(Kl) = 1, then, using Kl =
∫
Vl
f̂(x, y, z)dxdydz

leads to:

αl +
1

L
Klhl(vo) +

β

Cl
+ g′l(βKl) ≤ αm +

1

L
Kmhm(vo) +

β

Cm
+ g′m(βKm), (59)
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As a result, each optimal 3D cell association can be represented by:

V∗l =
{
(x, y, z)

∣∣αl + Kl

L
hl(x, y, z) +

β

Cl
+ g′l(βKl)

≤ αm +
Km

L
hm(x, y, z) +

β

Cm
+ g′m(βKm), ∀l 6= m

}
, (60)

which completes the proof of Theorem 3.
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